Finite size scaling analysis with linked cluster expansions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite size scaling analysis with linked cluster expansions

Linked cluster expansions are generalized from an infinite to a finite volume on a d-dimensional hypercubic lattice. They are performed to 20th order in the expansion parameter to investigate the phase structure of scalar O(N) models for the cases of N = 1 and N = 4 in 3 dimensions. In particular we propose a new criterion to distinguish first from second order transitions via the volume depend...

متن کامل

Critical Phenomena with Linked Cluster Expansions in a Finite Volume

Linked cluster expansions are generalized from an infinite to a finite volume. They are performed to 20th order in the expansion parameter to approach the critical region from the symmetric phase. A new criterion is proposed to distinguish 1st from 2nd order transitions within a finite size scaling analysis. The criterion applies also to other methods for investigating the phase structure such ...

متن کامل

Cluster analysis and finite-size scaling for Ising spin systems.

Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs with n percolating clusters, p(n)(m). We find that f(n)(c) and p(n)(m) have very good finite-siz...

متن کامل

ar X iv : h ep - l at / 9 60 80 10 v 1 2 A ug 1 99 6 Finite size scaling analysis with linked cluster expansions ∗

Linked cluster expansions are generalized from an infinite to a finite volume on a d-dimensional hypercubic lattice. They are performed to 20th order in the expansion parameter to investigate the phase structure of scalar O(N) models for the cases of N = 1 and N = 4 in 3 dimensions. In particular we propose a new criterion to distinguish first from second order transitions via the volume depend...

متن کامل

Linked Cluster Expansions on non-trivial topologies

Linked cluster expansions provide a useful tool both for analytical and numerical investigations of lattice field theories. The expansion parameter is the interaction strength fields at neighboured lattice sites are coupled. They result into convergent series for free energies, correlation functions and susceptibilities. The expansions have been generalized to field theories at finite temperatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B - Proceedings Supplements

سال: 1997

ISSN: 0920-5632

DOI: 10.1016/s0920-5632(96)00798-0